

Paylot Integration

This is the official documentation for the integration of Paylot.

For integration of the available SDKs and libraries, check out the
following.

Android SDK [https://github.com/paylot/paylot-android]

Woocommerce Plugin [https://github.com/paylot/woo-paylot]

PHP SDK [https://github.com/paylot/paylot-php]

Other SDKs and libaries coming soon…

Table of Contents

	Introduction

	Integration
	1. Paylot Inline JS Client

	1.1. Integration Code

	1.2. Configuration options

	1.3. Callback Parameters

	2. Paylot Standard

	3. Webhook Notification (Optional)

	Transaction Verification

	Split Payments
	Requirements

	Create Sub Accounts

	Update Sub Accounts

	Get All Sub Accounts

	Get Sub Account

	Usage

Introduction

This is the documentation for integration of Paylot.

NB: Before you can start integrating Paylot, you will need a Paylot
account. Create a free account now if you haven’t already done so:
https://paylot.co/signup.

After that, you can proceed to add a merchant/business at
https://paylot.co/businesses/create

Once you have added your business details, you would be required to add
at least one payment processor to accept payments. This involves adding
a currency you would be collecting (BTC, ETH, LTC, BCH, BNB, BUSD) and what you
prefer to store it as (NGN, USDT, USDC, PAX, BUSD).

Once you are done. You are good to go.

Integration

There are 2 ways to integrate Paylot into your web or mobile applications.
These are as follows:

	Paylot Inline: This provides a Javascript library that you can include
in any webpage to easily to use our payment widget with minimal code.

	Paylot Standard: This is necessary when you want a fully customized
experience. It provides an API endpoint you can use to generate a wallet address,
memo (BEP32 tokens) and the amount the customer is required to send.

1. Paylot Inline JS Client

Paylot inline javascript client offers a simple, secure and convenient
payment flow for web and mobile. It can be integrated with a line of
code thereby making it the easiest way to start accepting payments. It
also makes it possible to start and end the payment flow on the same
page, thus combating redirect fatigue.

Here is a sample code that calls Paylot and also handles outcome.

NB: Please, note that the key used is your merchant key. To get this
key, go to your merchant profile by clicking one of your businesses on
your dashboard @ https://paylot.co/dashboard and then clicking
profile on the sidebar.

	Clicking Business

	Clicking profile

	[image: Image One]

	[image: Image Two]

1.1. Integration Code

This HTML code shows a simple way to integrate Paylot into your webpage.

<form >
 <script src="https://js.paylot.co/v1/inline.min.js"></script>
 <button type="button" onclick="pay()"> Pay </button>
</form>

<script>
 function pay(){
 paylot({
 amount: 10000,
 key: 'pyt_pk-6efec0d34c8147eba4de783714c6eae7',
 reference: Date.now(),
 currency: 'NGN',
 payload: {
 type: 'payment',
 subject: 'Test payment',
 email: 'john.doe@gmail.com',
 sendMail: true
 },
 onClose: function(){
 console.log('I just closed the payment modal');
 }
 }, (err, tx) => {
 if(err){
 console.log('An error has occured');
 }else{
 //Transaction was successful
 console.log(tx);
 }
 });
 }
</script>

1.2. Configuration options

(* indicates required)

	Parameter

	Description

	amount *

	The amount to be paid (number)

	key *

	The merchant public key (string)

	reference *

	A unique reference that
identifies your transaction. If
not found, a random reference
would be generated (string)

	currency*

	The base currency (NGN, USD, BTC,
ETH, LTC & BCH allowed) (string)

	subaccount

	The reference for the subaccount
if available (for split payments).

	payload.email

	The email of the customer
(string)

	payload.type

	The type of payment (string)

	payload.sendMail

	Determines whether an email
should be sent to the user or not
(boolean)

	payload.callback

	The callback URL where the webhook
notification would be sent.
(string)

	onClose

	Function called when popup is
closed

1.3. Callback Parameters

The paylot function has the following signature.

function paylot(options, callback);

Options specifies the Configuration options as highlighted above while
callback takes the form of normal javascript callbacks i.e. accepts a
function with the following signature.

function callback(error, data);

Here, in the absence of errors, the data parameter will contain the
transaction details and is an object with the following properties
stated below.

	Parameter

	Description

	reference

	The transaction reference. Pay
attention to this if you didn’t
create a reference manually.
(string)

	sent

	Specifies if payment was made
successfully (boolean)

	confirmed

	Specifies if the payment has been
confirmed on the blockchain
(boolean)

	amount

	Specifies the intended amount in
the currency selected during
payment (number)

	amountSent

	Specifies the actual amount that
was sent to the blockchain
(number)

NB: These are the same parameters posted to the call back url which
can be set in the business profile.

2. Paylot Standard

This is necessary when you want a fully customized experience. We provides an API endpoint you can use to generate a wallet address, memo (BEP32 tokens) and the amount the customer is required to send. You are free to customize your interface the interface used to display the wallet address, amount and memo. To initialize the transaction, you are expected to use the following:

URL:

POST https://api.paylot.co/transactions/initialize

Request

The expected request is a JSON object of the format stated below.

{
 "currency": "BTC",
 "reference": "1234567",
 "key": "pyt_pk_12345678901234567890",
 "subaccount": "1111321",
 "email": "doz****@qa.team",
 "sendMail": true,
 "data": {
 "amount": 10000,
 "currency": "NGN"
 }
}

	Property

	Description

	currency *

	This specifies the currency you
would like to accept
options: (BTC,ETH,LTC,BNB, etc)

	reference *

	A unique reference for the
transaction.

	key *

	This is the merchant’s public
key.

	subaccount *

	The reference for the
subaccount if available
(for split payments).

	email *

	This is the customer’s email.

	sendMail

	This specifies if we should
send a mail to the customer on
successful transaction

	data.amount *

	This amount you want to charge

	data.currency *

	This ISO code for the currency
you are charging in. eg. NGN,
USD, etc

Response

The expected response is a JSON object of the format stated below.

{
 "amount": 0,
 "address": "string",
 "memo": "string",
 "currency": "string",
 "reference": "string"
 }

	Property

	Description

	currency *

	This specifies the currency you
would like to accept
options: (BTC,ETH,LTC,BNB, etc)

	reference *

	A unique reference for the
transaction.

	amount *

	This is the amount to charge
customers (fee inclusive).

	address *

	This is the generated wallet
address.

	memo (BEP32 only)

	This is the generated wallet.
memo (BEP32 currencies only).

NB: It is recommended that all wallet addresses are valid for a maximum of 15 minutes. Due to the volatility of the market, this is required to ensure that customers send the coins using the latest market rate. After 15 minutes, there’s a probability that the transaction won’t be picked up by us.

3. Webhook Notification (Optional)

Once we receive the notification that a transaction is marked as sent, we sent a POST request to the callback URL you have specified.
Specifying a callback URL is not mandatory since the inline JS client provides a mechanism to notify you when we detect that the coins have been sent and also, you can achieve almost the same result using background processes to verify/confirm transactions.

You can specify a callback URL in 2 different ways. Although, the second option overrides the first.

	Business Settings: You can specify the callback URL at your business profile page. This can be accessed by selecting a business and clicking Profile on the left menu.

	Inline JS Client: You can specify a callback URL while initializing a transaction on the inline JS client.

The body of the webhook notification request is a JSON object with the following parameters.

	Parameter

	Description

	reference

	The transaction reference. Pay
attention to this if you didn’t
create a reference manually.
(string)

	sent

	Specifies if payment was made
successfully (boolean)

	confirmed

	Specifies if the payment has been
confirmed on the blockchain
(boolean)

	amount

	Specifies the intended amount in
the currency selected during
payment (number)

	amountSent

	Specifies the actual amount that
was sent to the blockchain
(number)

Transaction Verification

In a situation where the call back url is not suitable, the developer
might require a way to query transactions to know the status of
transactions.

We have an API endpoint for checking transaction status with url as
stated below:

https://api.paylot.co/transactions/verify/{reference}

reference: This is the reference used while creating a transaction
or the reference returned in the callback.

To access this endpoint, the business secret key is required and this
secret key can be obtained at the business profile page.

This key should never be exposed to the public and is of the format:

pyt_sk-123455***

To send a request, use bearer authentication with your secret key as
token i.e. add this to your request header.

Authorization: Bearer pyt_sk-123455***

The API returns an object with the parameters described below.

	Parameter

	Description

	reference

	The transaction reference. Pay
attention to this if you didn’t
create a reference manually.
(string)

	sent

	Specifies if payment was made
successfully (boolean)

	confirmed

	Specifies if the payment has been
confirmed on the blockchain
(boolean)

	amount

	Specifies the intended amount in
the currency selected during
payment (number)

	amountSent

	Specifies the actual amount that
was sent to the blockchain
(number)

Split Payments

Split payments are necessary in cases where the merchant wants to split
payments with another entity or bank account. To enable split payments,
we use the concept of subaccounts. Sub accounts are bank accounts with
the split percentage specified. The following describe how to manage
subccounts on paylot.

NB: To manage your subaccounts, it’s required that you have your API
Secret key which can be accessed from your merchant profile on the
dashboard.

Requirements

API Url: https://api.paylot.co

All requests accept and return JSON.

For all stated requests, it’s required that you specify your secret
key in the authorization header i.e

Authorizaion: Bearer SECRET_KEY

This authenticates the specific merchant and ensures everything is done
in the confines of the 1 merchant.

NB: ** specifies required properties while * specifies properties
required for fiat only.

Create Sub Accounts

URL: POST /subAccounts

This creates a new sub account.

Request

The expected request is a JSON object of the format stated below.

{
 "currency": "NGN",
 "accountName": "JOHN & SONS Ltd.",
 "accountNumber": "0050505022",
 "bankName": "ACCESS BANK",
 "schedule": "auto",
 "percentage": 70
}

	Property

	Description

	currency **

	This specifies the currency of
the account. (Possible
options: NGN)

	accountNumber **

	This specifies the bank
account number or for digital
currencies, the wallet address

	bankName *

	This specifies the bank name
or for digital currencies, the
wallet name (optional for
digital currencies)

	accountName *

	This specifies the name of the
bank account or optional for
digital currencies

	schedule

	This specifies how often the
subaccount should receive
payouts. The dafault is auto
(24 hours interval). Other
options are coming soon.

	percentage **

	This specifies the the
percentage of payment they are
expected to receive

Response

The expected response is a JSON object of the format stated below.

{
 "accountName": "JOHN & SONS Ltd.",
 "accountNumber": "0050505022",
 "bankName": "ACCESS BANK",
 "schedule": "auto",
 "percentage": 70,
 "reference": "1876187618761876"
}

The reference is a uniquely generated code for each subaccount and
it’s required for initializing split payments.

Update Sub Accounts

URL: PUT /subAccounts/{id}

This updates a specified subaccount by it’s id.

Request

The expected request is a JSON object of the format stated below.

{
 "currency": "NGN",
 "accountName": "JOHN & SONS Ltd.",
 "accountNumber": "0050505022",
 "bankName": "ACCESS BANK",
 "schedule": "auto",
 "percentage": 70
}

NB: Same as in Create sub accounts above

Response

The expected response is a JSON object of the format stated below.

{
 "accountName": "JOHN & SONS Ltd.",
 "accountNumber": "0050505022",
 "bankName": "ACCESS BANK",
 "schedule": "auto",
 "percentage": 70,
 "reference": "1876187618761876"
}

Get All Sub Accounts

URL: GET /subAccounts

This gets all the subaccounts of a specific merchant.

Response

The expected response is a JSON object of the format stated below.

[{
 "id": "1",
 "currency": {
 symbol: "NGN",
 name: "Naira"
 },
 "accountName": "JOHN & SONS Ltd.",
 "accountNumber": "0050505022",
 "bankName": "ACCESS BANK",
 "schedule": "auto",
 "percentage": 70,
 "reference": "1876187618761876"
},{
 "id": "2",
 "currency": {
 symbol: "NGN",
 name: "Naira"
 },
 "accountName": "JOHN & SONS Ltd.",
 "accountNumber": "0050505022",
 "bankName": "ACCESS BANK",
 "schedule": "auto",
 "percentage": 70,
 "reference": "1876187618761876"
}]

Get Sub Account

URL: GET /subAccounts/{id}

This fetches a subaccount by it’s id.

Response

The expected response is a JSON object of the format stated below.

{
 "id": "1",
 "currency": {
 symbol: "NGN",
 name: "Naira"
 },
 "accountName": "JOHN & SONS Ltd.",
 "accountNumber": "0050505022",
 "bankName": "ACCESS BANK",
 "schedule": "auto",
 "percentage": 70,
 "reference": "1876187618761876"
}

URL: GET /subAccounts/ref/{reference}

This fetches a subaccount by it’s reference.

Response

The expected response is a JSON object of the format stated below.

{
 "currency": {
 symbol: "NGN",
 name: "Naira"
 },
 "accountName": "JOHN & SONS Ltd.",
 "accountNumber": "0050505022",
 "bankName": "ACCESS BANK",
 "schedule": "auto",
 "percentage": 70,
 "reference": "1876187618761876"
}

Usage

To split payments with a subaccount, it is required that you specify the
reference of the subaccount while initializing a transaction. Check the
integration section for more.

Index

Using Invoices

Creating an Invoice

Check invoice status

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_images/paylot_instructions_01.png
P paylot

s
Edit Profile >

MY BUSINESSES

/i

e John & Sons Ltd

Add a Business

_images/paylot_instructions_02.png
P paylot

BETA

(/4
John & Sons Ltd

001420550

Switch Business

Overview

FIAT BALANCE

o
USD($) G

Withdraw Balance

CRYPTO BALANCE

© Bitcoin 0BT
© Bitcoin Cash 0 BC
© Ethereum 0ET

O Litecoin

o
TRANSACTIONS

oLl

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Paylot Integration

 		
 Introduction

 		
 Integration

 		
 1. Paylot Inline JS Client

 		
 1.1. Integration Code

 		
 1.2. Configuration options

 		
 1.3. Callback Parameters

 		
 2. Paylot Standard

 		
 Request

 		
 Response

 		
 3. Webhook Notification (Optional)

 		
 Transaction Verification

 		
 Split Payments

 		
 Requirements

 		
 Create Sub Accounts

 		
 Request

 		
 Response

 		
 Update Sub Accounts

 		
 Request

 		
 Response

 		
 Get All Sub Accounts

 		
 Response

 		
 Get Sub Account

 		
 Response

 		
 Response

 		
 Usage

_static/up-pressed.png

_static/up.png

